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Absiract: Stochastic generation of daily rainfall is an important part of many engineering applications. It is
not surprising that several methods for generation of daily rainfall have evolved over time. While many such
methods work weil at representing the variations in rainfall from one day to the next, they are found lacking
at representing features at longer time scales. There is a need to develop methods for stochastic generation of
daily rainfall that can incorporate low-frequency features such as drought or long wet periods in the
generated record. This paper is part of a study to develop approaches for generation of daily rainfall
sequences at a given location that can represent the variability in rainfall at both short {daily) and long
(seasonal, annual and inter-annual) time scales. The generation of daily rainfall sccurrence {whether a day is
"wet" or "dey") is the problem addressed in this two paper series. This first paper of the serics presents an
approach to sclect relevant predictors of rainfall occurrence, and the second paper presenis a nonparametric
stochastic modet for generating rainfall occurrence over time. In this paper, the relationships between daily
rainfall occurrence and variables formed from previous values in the rainfall cccwrence sequence are
examined, using a partial measure of association for discrete variables termed the partial informational
correlation (PIC). We identify the best predictors of daily rainfall occurrence using a stepwise
implementation of PIC. We demonstrate our procedure by applying it to long-term rainfall data from
Melbourne and Sydney. The utility of the selected predictors is then evaluated by forecasting the rainfall

occurtence for each day in the historical record in a leave-one cross-validation mode.
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1. INTRODUCTION features observed in the historical rainfall record.
Generation of svnthetic rainfall sequences that

Long serics of generated-daity rainfatl can provide
muitiple input sequences for catchmeni water
management studies, These sequences supplement
the historical record and form an emsemble of
inputs to a catchment water management model.
They can be used in a Monte Carlo simulation
[Salas 1993] to enable risk-based assessment of
the water management plans being considered.

reproduce these features can be a difficuit task,
especially  if low  frequency  variability
(representing droughts and sustained periods of
high rainfall) is present in the rainfall record.
Most approaches for daily rainfall generation are
limited in their ability to reproduce such low-
frequency attribuies in the generated rainfall
Consider a simplistic example. Under a particular sequerices. The variability of seasonai’ and anaval

T ) - totals generated by these approaches is known to
management  plan, a calchm.ent _‘_&au.ﬂ be lower than the respective observed values
mal}agement model may mdlcatg that no water is [Buishand, 1978; Wilks and Wilby, 1999]. Such
::32:;0;6 lizioéf;‘%auﬁosgsifs " B%Snttewo g;?;; reduced variability affects _i.he repmscnt_aﬁon of
) . : - . sustained droughts or periods of continuousty
s;mulagon using long sequences .Of good quahiy high rainfali in the generated sequences, features
sy_nthenc data may help quani}fy the ﬂ?’k ,‘Of that arz of great interest in catchment planning
fatlure more accurately, enabling meaningful and management. There is a need o develop
comparison b_et}veen altemate s_nanagemeﬂ‘! plans. methods for stochastic generation of datly rainfall
Accurate depiction of the risks invelved with each that can reproduce low-frequency fea turfe s in the
mg;zg.%emem plan requires ihat .lhf-:,rgenerated generated rainfall sequences, with an accurale
rainfall sequences are representative of the representation of the variability of longer-term
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totals. Water resource managers need to be
convinced that the generated sequences are
representative of historical features before they
will use such sequences in risk-based assessment
of water management plans, especially when their
calchment models are sensitive to climatic
variability.

This two paper series is part of 2 study to develop
stochastic approaches for generation of single-site
daily rainfall that represents the historical
variability in rainfall at both short and long time
scales. The rainfall generation problem s
approached in twp stages: generation of rainfall
ouccurrence, and subsequent generation of rainfali
amounts on the simulated wet days. An approach
for generation of daily rmainfall occurrence
{whether a day will be “wet” or “dry”) is
presented here. This first paper concentrates on
identifying prediciors to be used in a model for
generating the daily rainfall occurrence state. The
second paper presents an approach for generating
rainfall occurrence time series that represent the
day-to-day variations in the historical record, and
cain represent variability at longer (seasonal,
annual and inter-annual) time scales through the
use of appropriately specified predictors. The
generation of the minfall amounts is not discussed
here and will be presented in fature work,

Many fraditional methods for daily rainfall
generation assume that the daily occurrence or
amount depends exclusively on the rainfall that
occurred on the previous day, an assumption that

capable of working with discrete variables, as our
prediciand {zainfall occurrence) as well as the
candidate predictors, all assume discrete values.
Additionally, the criterion shouid be such that no
explicit or implicit assumptions abont the nature
of variability or dependence are made in selecting
the predictors. Unfortunately, traditional methods
used to select the model order, such as the Akaike
Information Criterion [Akaike, 1974, Wilks and
Wilby, 1999}, make assumptions about the
probabilily distributions of the variables involved.
We present here a nonparametric procedure for
measuring  the dependence belween discrete
variables that avoids specification of probability
distributions {such as Binomial, Multinomial or
Poisson). The procedure also avoids assuming
linear or a specified non-linear dependence. Our
proposed  procedure  is  termed  partial
informational correfation (PIC). This is a "partial”
measure of dependence, which allows it to be
used to idenufy predictors in a stepwise approach.
Our proposed approach is related to the Partial
Mutual Information (PMI) criterion for 2 system
of continuons random variables [Sharma, 20001,

2, PARTIAL INFORMATION

The mutual information (MI) criterion [Sharma,
2000; Linfoot, 1957} is a measure of dependence
that can detect and quantify both linear and non-
lincar relationships. Sharma [2000] shows that Ml
performs better than correlation in detecting and

ensures  under-representation  of variability at
longer time scales. The approach adopted here for
stochastic generation of daily rainfafl occurrence
is to-incorporate both short-term (day to day) and
longer-term {seasonal, annual and inter-annual)
features into the generated record through the use

quantifying a range of non-linear dependence
structures, and that it also performs well in
quantifving linear dependence. We believe that
the mutual information crilerion can quantify a
broader range of undesdving dependence
structures than any other available methad,

""""" of appropriately selecied predictor variables that
describe  these features. Use is made of
“aggregate” variables that describe how many wet
davs have been observed over a period of time,
We formulate 2 number of aggregate variables
that represent the rainfall state over varying
aggregation periods. These aggregate variables
are used in our set of candidate predictors for
daily rainfall occurrence. The candidate predictors
are formed solely from previous values in the
rainfall sccurrence sequence, and are formulated
to represent the short-term and  longer-term
variability that exists in the historical rainfall
occurrence record. This approach can capture the
dependence structure of the data in a way that
involves fewer parameters than a traditional
multi-order Markov chain model.

The presence of a number of possible predictor
variables necessitates the use of a predictor
identification criterion. Such a criterion should be
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Partial Information (PI) is a measure of partial
information that has been developed by the
authors, as an extension of the theory of mutual
information. Full details of the theory behind
partial information can be found in Harrold et al.
[2001b]. For any given multivariate sample where
the vanables are discrete, and X denotes the
response and P;, P ..., Pr denote the predictor
wariabies, the PI score can be estimated as:
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conditional probability miass functions estimated
at the sample data points,

PI(X,F, | 2) estimates the partial dependence
between X and Py, after accounting for the effect
of the existing predictor set Z. The rationale
behind P1 is the definition of dependence {or
independence). The conditional jeint probability
density function is equal to the product of the two
conditional probability densities if there exists no
dependence between .Y and P, after accounting
for the effect of Z. The PI score in (1) would, in
that case, equal a value of O (the matio of the joint
and marginal densities being one, and the log of
this eguals zero). A high value of the PI score
would indicate dependence between X and P,
after accounting for the effect of Z. PI is scale
invariant, and remains unchanged if either
variable undergoes any linear or non-linear
transformation,

‘When the first predictor is being investigated, the
pre-existing predictor set Z is empty and (1)
collapses to the eguation for mutual information.
This also occurs if Z has only one possible value,
which leads 10 a useful method of calculating PI
for discrete data. I the sum in (1) is expressed as
separate equations for cach possible 2z, (1)
becomes a weighted sum of as many Mi
cstimates, as there are possible states of z; (a {inite
nurber as z; is discreie).

Mutual information can be easily transformed to

the calpulated PIC value represents significant
dependence, and we expect that there is a less
than 5% chance that the varables are
independent. The 93* percentile PIC as described
here will be denoted as PI{ys in the discussion
that follows. PICgs is used to indicate whether the
estimated value of PIC is statistically significant.

3. SELECTION OF PREDICTORS FOR
RAINFALL QCCURRBENCE

We apply the pastial information criterion 1o the
problem of predictor selection for a daily rainfall
cccurrence model, using long-term daily rainfall
from 13 locaitons in Australia. Only Metbourne
and Sydncy results are presented here due to
space limitations. A threshold of 0.3 mm was
used to define a “wet day” [after Buishand, 1978],
and a September-Angust water vear was used.

Our set of candidate predictors was chosen fo
represent 2 range of short, medivm and longer-
term features in the daily rainfall occurrence
sequence. The candidate predictors for rainfail
occurrence that we adopt are the length (L) of the
previous dryv/wel spell leading up to the current
day, the number of wet days in the last M days
where M = 1, 2, 3, a “wetness index” for the last
D days where D = 7, 14, 30, 60, and 183 days,
and a “wetness index” for the last Y years where
¥=1,2,34,56,7. 8 9 and 10 vears. Thus 19
candidate predictors are formulated These

eive g statistic that Ties e rnge O 1, whicrs
U represents no dependence and 1 represents
perfect dependence. The rescaled statistic is called
informational correlation [Linfoot, 1957]. This
can be applied to partial information to give us
partial informational correlation (PIC):

candittate predictors e denotedas Tid2d 34
7d, 144, 304, 604, 183d, Iy, 2y, 3y, 4v, 5y, 6v,
Ty, 8y, 9y, and 10y, in the discussion that follows.
As discussed in the mmtroduction, these candidate
predictors are “aggregate” variables that describe
how wet it has been over a period of time. Values
of these predictors were caloulated for every day

PIC = /1 - exp(~2P1) @
As PIC assumes a range of 0 to §, and can be
thought of as a generic measure of correlation
independent of distributional specifications, all
results presented in the sections that follow use
PIC as the measure of dependence.

When a measure of dependence is estimated from
a small sample, there is some uncertainty as to
whether  the calculated  value  represents
dependence that is significant, ie that the
underlying (population) dependence is greater
than zero. We use a randomisation test [Maritz,
19811 1o test significance, where the X variable is
repeatedly resampled without replacement 1o form
a number of randomised samples that have no
dependence between X and the other variables. If
the calculated PIC value is greater than the upper
95" percentile PIC from the randomised samples,
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in the historical rainfall occurrence record, except
in the first ten years of the record.

Because we are working with rainfall occurrence,
which is a two-staie discrete varlable, it is
important that we formulate discrete predictors
with g limited number of states (this allows more
accurate estimation of the probability mass
functions in {1)). Each of the “wetness indexes”
{i.e. candidate predictors 7d to i0y) is a state
variable that describes how wet it has been over
the previous period. Each wetness index can take
integer values between | and 5, where 1 = very
dry, 2 = dry, 3 = average, 4 = wet, and 5 = very
wet, Valugs are assigned based on comparison
with the ranked historical values of the number of
wet days in each period of length D days {or Y
vearsy ending in the sample being investigated.
Candidate predictor L (the length of the previous
dry/wet spell) is alse a state variable, taking
values between -3 and 3, where -3 = a very long



wet spell, -2 = a long wet spell, -1 = a short wet
spell, 1 = a short dry spell, 2 = a long dry spell.
and 3 = a very long dry spell. Values are assigned
based on the ranked historical lengths of the
dry/wet spells that end in the sample being
investigated. Dry and wet spells are ranked
separately.

The PIC scores for each candidate predictor are
calculated for each of 24 scasonal windows,
which span the year. The seasonal windows
provide a sufficiently large sample for calculation
purposes, while keeping seasonal effects
neghigible in the sample formed by the window.
Each seasonal window includes values from all
except the first ten years of the historical record.
The six ssasonal windows forming Spring
{March-April-May), Summer (June-July-August),
Autumn  (September-October-November)  and
Winter {December-January-February} have their
PIC results averaged to give a single
parsimonious predictor set for each of the four
quarters. A stepwise predictor selection algorithm
[see Harrold et al., 2001b] standardised the resulis
using randomisation tests. This method produced
consistent results and allowed the candidaie
prediciors to be compared against each other,

4. RESULTS: SELECTED PREDICTORS
FOR RAINFALL OCCURRENCE

Table 1 shows the three most sigmificant

Melbourne and Svdney. This was also true ai the
other 11 locations we tested. Our results showed
that when the first predictor was being chosen, the
1d predictor easity outperformed all other
candidate predictors at all the locations being
tested. However, when a second predictor was
chosen, the difference in performance between the
candidate predictors was not as clear-cut,
Additionally, in no case were more than two
predictors identified as significant at the 95%
level, The location that came closest to having a
third significant predictor was Sydaey in winter
(predicter 3d, 5+0.97).

The resolts in Table 1 show that rainfail
occurrence on the previous day is the best single
predictor for rainfall occurrence on the current
day. This ig an implicit assumption in rainfail
occurrence models that generate oocurrence one
day at a time, such as a Markov chain. Note that a
combination of candidate predictors 1d and 2d is
equivalent to the predictors used in a traditional
second-order Markov chain model. Our results
indicate that a first-order or second-order Markov
chain model should provide a reasonable fit to the
short-term historical features of most of the 13
rainfall occurrence records that we  tested.
However, predictor combinations that were
identified for Melbourne and Sydney in winter are
quite different to the predictors used in a
traditional Markov chain model. In all the cases

where more than one predictor is identified as
gigﬂiﬁpmﬂ, a-model _that _unses these identified

predictors for daily rainfall occurrence that were
found for Melboume aud Sydney, for each of four
guarters. The PIC/PICys ratio is also shown. The
predictors that were significant at the 93%. level
(1.2, with PIC/PICy; > 1.0) are undeslined.

Rainfall_occurrence on the previous day (ie.

multiple predictors should have the potential io
better reproduce the shori-term historical features
of the rainfall record. We test this in the next
section of this paper.

candidate predictor 1d) is identified as a
significan! predictor in every quarter for both

Table 1. Selected predictors for rainfall occurrence.

Location Sep-Nov Dec-Feb Iar-iay Jon-Aug

1 2 3 1 2 1 2 3 12 3
Mebourne | 1d | 5y | 2d | 1d . 6y (183d| Id | 10y | 60d | id | 4 | 30d
1855-1998 | 5.6 0.87 | 0.9 | 601 08 | 0951630, 099 | 0.8 1420} 121 {093
Sydney | Id | 183d | 60d | 1d i 60d | d L | zy |14} % | 3
1859-1998 | 6.12: 093 : 09 {593 088 089|805 108 | 091 785! 115 097
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Table 2, MSE for forecasts of Melboumne rainfall occurrence.

Predictor combination Spring SUINTNCT aulnnn winter annuaj
Unconditional resampling 0.490 0.404 0.463 0.500 0.464
1-predictor 0.459 0.372 0427 0.477 0.434
2-predictors 0.459 0,371 0,426 0.474 (.432
J-predictors 0.458 (.371 0428 0.475 0.433

Table 3. MSE for forecasts of Syduey rainfall occurrence.
Predictor combination Spring summer antumn winter annual
Unconditional resampling 0.467 0.476 0491 0.465 0,475
1-predictor 6.433 0.439 (.427 0.397 0,424
2-predictors 0.433 0.438 0.427 {5.395 0,423
3-predictors 0.434 0,439 (3,427 (.393 §.423

5. FORECASTS USING THE IDENTIFIED
PREDICTORS

In order to test the utility of the selected predictors
in forecasting the rainfall occurrence siate, a leave-
one cross validation analysis of rainfall occurrence
forecasts was conducted. This involved predicting
the rainfall one day at a time for the full historical
record using a simple forccast approach, and
comparing the predicted rainfall state with what
was observed in reality. The rainfall prediction
approach adopted here is related to the rainfall
generation model described in the second paper of
this scrics [Harrold et al, 2001a]. The approach
adopted consisted of using the current state of the
predictors to conditionally generate one hundred

here as the average value of the predicted rainfall
state, conditional to z;;. the predictor variables
associated with x;,. The prediction model is
formulaied so as to use all observations in a
seasonal subset of the historic record except those
from the year for which the prediction is made (i
vear j).

The wvalues of MSE obtained using various
combinations of predictors for the forecasts for
Melboume and Swdney are presented in Table 2
and Table 3. Values from all days in a scason are
averaged to give the resuils shown in the table. The
predictor combinations are:

No predictors (unconditional resampling)

ceatid ez

FETREoL

forecasts of the rainfall occurrence state on the
current day, the prediction model being formulated
based on all observations in a seasonal subset of
the  historic record except the observations. from
the year corresponding to the day being predicted.
Such an approach, known as leave-one-cross-

points not used in model development.

With the dry state denoted as "0" and the wet state
as "1" the leave-one-cross-validation predictions
were compared to the true rainfall state, as inferred
from the historical record. If the one-day ahead
predictions are working well, one expects that the
difference between the actual state and the average
predicted state would be smail. The measure of
error nsed for the i day of the year is:

}w i (xj,i - E’L i (‘i'j,f ; ’Zj,i ))2

H FE3!

MSE; = 3

where MSE; 1s used to denote the mean square
error, a is the number of vears of historical daia
used in the calculation, x;; is the observed rainfall
gccurrence state (07 representing dry and 17
representing wet} on the i gay of vear i, and Eral
) represents the expeclation operator, estimated
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c.  Z-predictors for each quarter, from Table 1

d. 3-predictors for each quarter, from Table 1.

The tesults show that the relative reduction in
WSE due-to-using-t=predictor (rainfail-oocurrence
vesterday} instead of unconditional resampling is
large. This reinforces our conciusion from the
previous section that rainfall occurrence on the
previgus day is the single best predictor for rainfall
occurrence on the current day. Incorporating ihis
predictor into our forecast model significantly
reduces the error of the forecast. The results for
Melbourne show that 2-predictors produce a lower
prediction error than 1-predictor in winter (June-
Aungusty. For this season, our predictor selection
methods using PIC identify two prediciors as
significant {cf. Table ), 2-predictors are alse
slightly better than l-predictor in summer and
autumn. For autumn, our predictor selection
alporitun was bordering on selection of two
predictors. The use of more than two predictors is
not justified {(except, possibly, in spring), as the
prediction ervors are not lower in the 3-prediciors
case than in the Z-prediciors case. With the



exception of spring. this agrees with our result
from the predictor selection algorithm.

The resuits for Sydney show that the use of more
than two predictors is not justified in spring,
summer and autumna, as the MSE are not lower in
the 3-predictors case than in the 2-predictors case.
In winter, the MSE results suggest that 3-
predictors should be used. This agrees with our
resuit from the predictor selection algorithm, For
winter, Table 1 shows that we were on the
borderline of selecting three predictors (as noted in
the discussion after the table).

We also tested alternate predictor sets, chosen to
represent specific time scales (daily, seasonal,
annual and interanmmal), and found that the
predictor combinations identified using PIC have
equal or lower prediction errors than the altemate
predictor combinations. This confirmed that owr
PIC predictor identification method gives an
optimal or near-optimal predictor set for prediction
of rainfall occurrence one day ahead of the present,

6. CONCLUSIONS

This paper has presented a new measure of
dependence that we call partial informational
correlation (PIC), and applied PIC to discreie time
series data. PIC is a partial measure of dependence
denved from mutual information theory, which is
sensitive to both linear and non-linear dependence.
We have used PIC in an approach for identifying

particelarly interested in representing the longer-
term dependence that is associated with historical
features such as droughts and sustained periods of
high rainfall. A different method for measuring the
performance of a generation model based on the
assessment of a large number of long generated
sequences is proposed in Harrold ot 21, [2001al, A
moedel  for  stochastically  generating  minfall
occurrences is alse described in the second paper.
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